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Abstract we present a comprehensive analysis of magnetic and velocity fluctuations in Earth's magnetotail
plasma sheet based on observations from the Magnetospheric Multiscale (MMS) mission during its 2017
magnetotail campaign. Utilizing a novel Hybrid Filter—Decision Tree Model (HFDTM), we systematically
classify the plasma sheet (X < —10 R_E in Geocentric Solar Ecliptic coordinates) into four key regions: the
current sheet (CS), central plasma sheet (CPS), plasma sheet boundary layer (PSBL), and tail lobe. Within each
region, we examine fluctuation dynamics across three critical flow regimes, including stagnant (V < 50 km s ™),
sub-Alfvénic (50 km s~ < V < V,,), and super-Alfvénic (V > V,). Our key findings reveal: (a) Anisotropy
Transition: Magnetic field anisotropy reverses with increasing flow speed, shifting from near-isotropic values
(AB/AB, =~ 1.1) under stagnant conditions to strongly perpendicular-dominated distributions (~0.4) in the
super-Alfvénic regime; (b) Multimodal Heating: Multi-peak structures in the thermal energy (E1) spectrum,
along with the co-evolution of thermal (Hy) and kinetic (Hy,) enstrophy from the CS to the PSBL, reveal a dual-
pathway heating mechanism involving both kinetic and magnetic energy transfer; and (c) Correlation Structure:
Across all regions and regimes, weak-to-moderate velocity—magnetic field correlations dominate, with
enhanced V)-B) correlations under super-Alfvénic flows. Collectively, these results identify the plasma sheet as
a distinct turbulent regime, governed by localized energization mechanisms (e.g., reconnection, substorm
dipolarization, and flow braking), marking a departure from the Alfvénic turbulence paradigm observed in the
solar wind.

Plain Language Summary Earth's magnetotail, the stretched region behind the planet shaped by the
solar wind, stores and releases energy through dynamic processes such as magnetic reconnection and substorms.
In this study, we use data from NASA's Magnetospheric Multiscale (MMS) mission to investigate how energy
moves through the magnetotail via magnetic and plasma (ion) fluctuations. Using a new machine learning
model, we divide the magnetotail into four key regions and analyze how turbulence changes with different
plasma flow speeds. We identify new turbulence behavior in Earth's plasma sheet. Specifically, we observed
multiple peaks in thermal energy and coordinated patterns in thermal and kinetic enstrophy, indicating two
simultaneous energy transfer pathways: magnetic and kinetic. These findings enhance our understanding of how
energy is distributed and dissipated in space plasma and contribute to improving models of plasma sheet
turbulence.

1. Introduction

The solar wind, a collisionless high-conductivity plasma with a nearly frozen-in interplanetary magnetic field
(IMF), serves as a natural laboratory for studying magnetohydrodynamic (MHD) turbulence (Bruno & Car-
bone, 2013). Expanding at super-Alfvénic speeds (~400-800 km/s), it forms a nonlinear system with free
boundaries, where flux-freezing dominates across most scales. The IMF, shaped by solar rotation into Parker's
spiral, defines the heliosphere's radial-azimuthal structure (Parker, 1958). Superimposed magnetic fluctuations
comprise both wave-like and convective components (Bendt et al., 2024; Serianni et al., 2007; Tu &
Marsch, 1993; Zhao et al., 2022), revealing a complex interplay between Alfvénic turbulence and coherent
structures, key features of collisionless plasma dynamics (Verscharen et al., 2019).

WANG ET AL.

1 of 15


https://orcid.org/0009-0004-4896-4228
https://orcid.org/0009-0009-8460-9609
https://orcid.org/0000-0001-7431-5759
https://orcid.org/0009-0008-8740-4863
https://orcid.org/0000-0002-4839-4614
https://orcid.org/0000-0002-9960-9988
https://orcid.org/0000-0001-6991-9398
https://orcid.org/0000-0003-0452-8403
https://orcid.org/0000-0001-6271-0110
https://orcid.org/0000-0003-3072-6139
https://orcid.org/0009-0003-7522-1676
mailto:lihui@nssc.ac.cn
mailto:lqzhang@nssc.ac.cn
https://doi.org/10.1029/2025JA034259
https://doi.org/10.1029/2025JA034259
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2025JA034259&domain=pdf&date_stamp=2025-08-05

MID
ADVANCING EARTH
AND SPACE SCIENCES

Journal of Geophysical Research: Space Physics 10.1029/2025JA034259

In contrast, turbulence in the Earth's magnetotail plasma sheet arises from flux-tube interchange instabilities and
current sheet (CS) dynamics. Its magnetic field configuration is well described by the Harris-type profile:

B = B, tanh(z/) X + B, %, (1)

where B, is the lobe field, B, < By is the normal component, and 1 is the sheet half-thickness. This structure
supports tearing mode instability (Coppi et al., 1966) and magnetic reconnection under arbitrary guide field (By)
conditions (Nakamura et al., 2006; Schindler & Birn, 1982). The small yet essential normal field component (B,,)
breaks antiparallel symmetry, enabling cross-field instabilities linked to substorm onset (Lui et al., 1991).

Unlike the solar wind's persistent outward flow, the plasma sheet is a quasi-steady, pressure-balanced system
coupled to the ionosphere via field-aligned currents (Baumjohann et al., 1990; Lockwood & Cowley, 2022; Milan
etal., 2017). Energy enters through dayside reconnection and accumulates in the stretched CS as magnetic energy
(Ma et al., 1995; Wang et al., 2014), which is subsequently released via two primary channels: (a) near-Earth
substorms (X ~ 8—12 Rg) (Baumjohann et al., 1999; Cheng, 2004; Kepko et al., 2015; Kozak et al., 2021; Pet-
rukovich et al., 2000), and (b) mid-tail reconnection (X = 20 Rg) (Baker et al., 1996; Palmroth et al., 2023; Sato &
Hasegawa, 1982; Zhang et al., 2016). These processes mediate the transition from large-scale convection to
localized energy dissipation in a turbulent plasma environment (Gonzalez & Mozer, 1974; Keiling, 2008;
Strangeway & McFadden, 2008; Zimbardo et al., 2010). Previous studies have delineated three key regimes of
plasma sheet turbulence:

1. p-dependence: Turbulence strength varies with plasma beta (f, the ratio of thermal pressure to magnetic
pressure), peaking in the high-f central plasma sheet (CPS, § > 1), weakening in the intermediate-f plasma
sheet boundary layer (PSBL, 0.05 < f < 1), and diminishing in the low-$ lobe (# < 0.05) (Vords et al., 2004,
2005).

2. Reconnection-dependence: Enhanced magnetic fluctuations are observed during bursty bulk flows (BBFs)
(Ergun et al., 2018; Huang et al., 2012; Osman et al., 2015; Weygand et al., 2005).

3. Substorm linkage: Large-amplitude fluctuations during dipolarization events complement reconnection-driven
dynamics (Neagu et al., 2002, 2005; El-Alaoui et al., 2013, 2021; Zhang, Wang, Dai, Ren, & Lui, 2022).

More recent observations from NASA's Magnetospheric Multiscale (MMS) mission have significantly advanced
our understanding of BBF turbulence. The mission's multi-point measurements have uncovered several key
features: (a) pronounced vorticity (@ = V X V) within reconnection jets (Zhang et al., 2019), marking the first
direct detection of organized rotational coherent structures; (b) scale-dependent perpendicular anisotropy, with
kinetic-scale vorticity dominating over large-scale frozen-in flows (Zhang, Baumjohann, et al., 2020; Zhang,
Wang, Dai, Baumjohann, et al., 2022); and (c) the emergence of eddy-dominated turbulence in field-aligned
PSBL flows (Zhang et al., 2023), signaling a transition from wave-like to eddy-mediated dynamics (Borovsky
& Bonnell, 2001; Borovsky et al., 1997). These findings establish BBF turbulence as a kinetic-scale phenomenon,
where energy cascades from large-scale convection to localized dissipation via eddy-driven processes (Borovsky
& Funsten, 2003; Oughton et al., 2015; Tian et al., 2010), thereby reframing our theoretical models of magnetotail
turbulence (Weygand et al., 2006, 2009, 2011).

To systematically characterize turbulence across the plasma sheet, we applied a novel Hybrid Filter—Decision
Tree Model (HFDTM) to data from the Magnetospheric Multiscale (MMS) mission during its 2016 magneto-
tail campaign. The structure of this paper is as follows: Section 2 describes the MMS data sets and preprocessing
procedures. Section 3 outlines the architecture of the HFDTM and presents its validation. Section 4 investigates
magnetic and plasma fluctuations as functions of plasma f. Section 5 presents statistical analyses, including
velocity and magnetic field anisotropies, as well as wavelet-based energy and enstrophy metrics. Section 6
discusses the underlying turbulence characteristics by systematically analyzing velocity and magnetic field
fluctuations in both parallel and perpendicular directions. Finally, Section 7 summarizes the key findings and
implications of the study.
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2. Method
2.1. Data Set Acquisition and Processing

This study utilizes low-resolution measurements from MMS mission (Burch et al., 2016), employing two core
instruments: the Fluxgate Magnetometer (FGM) (Russell et al., 2016) for magnetic field observations and the Fast
Plasma Investigation (FPI) (Pollock et al., 2016) for ion and electron plasma parameters. FGM provides magnetic
field vectors at both 128 Hz (burst mode) and 8 Hz (survey mode), while FPI captures ion and electron distribution
functions at 150 and 30 ms cadences, respectively.

To ensure temporal alignment between instruments and enhance computational efficiency, all data sets were
uniformly downsampled to standardized time resolutions: 0.125 s (8 Hz) for magnetic field measurements and
4.5 s for plasma parameters. All quantities were analyzed in the Geocentric Solar Ecliptic (GSE) coordinate
system. These harmonized cadences were selected to preserve key dynamical timescales characteristic of mag-
netotail processes, including dipolarization fronts (~10 s), substorm onsets (~60-200 s), and BBFs (~60-600 s).
This approach enables reliable cross-comparisons between plasma and field variables while capturing the mul-
tiscale dynamics of the terrestrial plasma sheet.

2.2. Low-Pass Filter and Wavelet Analysis

To separate equilibrium fields from turbulent fluctuations, we applied a fourth-order Butterworth low-pass filter,
implemented via MATLAB's butter function. The filter cutoff frequency was set to 1/600 Hz, corresponding to a
10-min period. This threshold effectively separates perturbations (capturing dynamic fluctuations driven by
waves, reconnection, or turbulence) from background fields (representing slowly varying equilibrium structures).
A shorter window, such as 5 min, may attenuate or distort key mesoscale structures—particularly the lower-
frequency components of BBFs and flow braking signatures. These features are critical for understanding en-
ergy transport and turbulence in the magnetotail. On the other hand, a longer window (e.g., 15-20 min) tends to
over-smooth the background magnetic and plasma fields, potentially masking important transitions between
quasi-equilibrium states and dynamic fluctuation regimes. The 10-min window thus provides an optimal balance
between noise suppression and preservation of physically meaningful transient structures.

The filtering procedure was uniformly applied to vector components of the magnetic field (By, By, B,), bulk
velocity (Vy, Vy, V), ion density (n;), and ion temperature (7;). Perturbations were computed by subtracting the
filtered signal from the original (e.g., (AB = B_original - B_filtered; AV = V_original—V _filtered)). The resulting
data set provides a clean separation between large-scale structure and dynamic fluctuations, ideal for both sta-
tistical analyses and targeted case studies. The 10-min filter window captures processes such as reconnection and
substorms without suppressing mesoscale structures.

To quantify turbulence characteristics, we employed the dbl (Haar) wavelet from the Daubechies family,
applying two complementary metrics:

Wavelet energy (E): Defined as the sum of squared wavelet coefficients, E = X(C?), where C* represents the
wavelet coefficients. This metric identifies localized energy injections from intermittent events such as CS
disruption or reconnection jets.

Wavelet entropy (H): derived from Shannon's entropy, this metric is given by: H(k) = —XP-log(P + €), where
P = C*/Energy, and ¢ is a small constant to prevent singularities. This measure captures the signal's complexity
and helps distinguish between organized and stochastic plasma behaviors.

3. Hybrid Filter-Decision Tree Region Partition Model
3.1. Model Constructing

The HFDTM, illustrated in Figure 1, is designed to classify plasma sheet regions using a physics-informed
machine learning framework. The model processes three key plasma parameters: the magnetic field compo-
nent (B,), ion temperature (T;), and plasma beta (). Based on these inputs, it identified four characteristic regions
in the magnetotail: CS, CPS, PSBL, and lobe. Note that the three physical parameters used in the HFDTM, namely
B,, B, and T;, are either scalar quantities or individual vector components. As such, they are only minimally
affected by coordinate transformations between GSE and GSM. Consequently, the HFDTM's region
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Figure 1. Schematic flowchart of the HFDTM. The model ingests key plasma parameters (By, 7;, /) and manually labeled
region identifiers. Inputs are processed via low-pass filtering and Z-score normalization and then passed to a decision tree
classifier trained with five-fold cross-validation. Final performance is assessed using averaged outputs from each fold on a
holdout testing set.

classification remains effectively invariant, ensuring that the resulting partitioning and identification of mag-
netotail regions are both robust and coordinate-system independent.

The classification pipeline consists of two preprocessing stages:

1. Low-pass filtering: Used to extract large-scale background trends and suppress high-frequency noise while
preserving mesoscale structures critical for regional discrimination.

2. Z-score normalization: Standardizes all input features to mitigate the impact of outliers and ensures uniform
scaling across variables.

These preprocessed parameters are input into a decision tree classifier which dynamically partitions the mag-
netotail based on spatial variations in plasma properties.

3.2. Manual Labeling and Training Set Construction

Initial region labels were assigned based on statistical distributions of key plasma parameters, as visualized in
Figure 2. Each region exhibits distinct physical characteristics. The CS shows highly dynamic with extreme
plasma beta (median =~ 100, IQR: 50-150), high ion temperatures (median ~ 8,000 eV), and B, values near zero,
indicative of frequent reconnection and sheet flapping events. The CPS exhibits moderate turbulentity, with
median # = 50 and T; = 5,000 eV. PSBL behaves as transitional in nature, with decreasing f# and T, reflecting
intermediate variability. The lobe is the most quiescent region, characterized by low S (x0.5), low T; (z500 eV),
and strong, stable B, (above 20 nT).
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Figure 2. Box plots of key plasma parameters used for region classification: (a) Plasma beta (), (b) ion temperature (T}, eV),
and (c) By (nT). Boxes show the interquartile range (IQR), medians as horizontal lines, whiskers extending to 1.5 X IQR, and
outliers as dots. Strong regional separation and internal variability, especially in the current sheet and plasma sheet boundary
layer, provide a robust foundation for classification.

The training data set was built from MMS observations between May and September 2017, with equal repre-
sentation across regions. Each sample spans a 4-min interval to balance resolution and avoid temporal redun-
dancy. Outliers were removed using a Z-score-based anomaly detection scheme. For each parameter (5, By, T;), a

j=1
number of features, and Z;; is the Z-score for feature j. Samples with the highest scores were iteratively excluded

n
composite anomaly score was calculated as: A; = % 2. Z;j, where A, is the anomaly score for sample i, n is the

until 100 clean samples remained per region. Notably, the PSBL exhibited the highest removal rate, consistent
with its greater variability.

The cleaned data's statistical properties, illustrated in Figure 2, demonstrate clear separability among regions

while preserving natural variability critical for the model to learn realistic boundaries. Panel A shows plasma S,

with the CS displaying high variability and significant outliers, while other regions exhibit progressively lower

and more stable values. Panel B displays ion temperature distributions highlighting elevated 7; in CS and CPS

with a clear decline in PSBL and Lobe. Panel C illustrates the B, component of the magnetic field. CS values
cluster around zero, reflecting CS dynamics, while B, increases steadily to-
ward the lobe, indicative of stronger background fields (Table 1).

Table 1 3.3. Feature Importance
Training Set Composition and Data Cleaning Summary

To assess the relative contribution of each input parameter to region classi-

Samples .. . . . . . .

P fication, we evaluated feature importance using normalized information gain,
PS region Before cleaning After cleaning Removed (%) a standard metric in decision tree learning (Quinlan, 1986). Normalized in-
CS 108 100 7.4 formation gain quantifies the reduction in entropy (i.e., uncertainty) resulting
CPS 113 100 11.5 from a data split on a particular feature, scaled between 0 and 1. A higher
PSBL 120 100 167 value indicates that a feature contrll?uFes more'effectlvely to filstmgulshmg
between classes. Entropy at each decision node is computed using a Shannon

LOBE 109 100 8.25

entropy-based formula: H(k) = —XP-log(P + €), where P = CzlEnergy and is

Note. Sample counts before and after cleaning, along with percentage 3 small constant to prevent singularities. This formulation captures the in-
removed, are shown per region.

formation complexity of turbulent plasma behavior across regions.
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Figure 3. Feature importance ranking based on entropy reduction in the

HFDTM. Plasma beta (f) is the most influential parameter (>85% weight),
followed by By and T;. This ranking aligns with theoretical expectations of
plasma structure and regional boundaries in the magnetotail.

Table 2

Performance Comparison of Region Classification Models Applied to
Magnetotail Plasma Sheet Data

Metric Filter-based ~ Wavelet-based = Raw signal
CPS precision 92.80% 84.20% 84.00%
recall 92.00% 85.00% 80.00%
fl-score 92.10% 83.40% 80.80%
CS precision 99.10% 91.70% 88.40%
recall 97.00% 90.80% 91.00%
fl-score 98.00% 90.50% 89.20%
LOBE precision 94.50% 95.40% 94.40%
recall 96.00% 98.00% 95.00%
f1-score 95.00% 96.50% 94.60%
PSBL precision 89.50% 92.80% 87.00%
recall 89.00% 87.00% 84.00%
f1-score 88.80% 89.20% 84.70%
Accuracy 93.70% 90.20% 87.60%
Macro Avg precision 94.00% 91.10% 88.30%
recall 93.50% 90.20% 87.60%
f1-score 93.30% 89.90% 87.40%
Weighted Avg  precision 94.00% 91.10% 88.30%
recall 93.60% 90.20% 87.60%
f1-score 93.30% 89.90% 87.40%

Note. Results are presented for three approaches: filter-based (HFDTM),
wavelet-based (WDTM), and raw signal input. For each magnetotail region
(CS, CPS, PSBL, LOBE), precision, recall, and Fl-scores are reported.
Aggregate  performance
macro-averaged, and weighted-average scores, are also included.

metrics,

including

overall

accuracy,

As shown in Figure 3, f is the most informative feature (~0.8), reflecting its
dominant role in defining pressure balance across magnetotail regions. B, and
T; showed moderate importance (<0.3), contributing additional discrimina-
tory power.

3.4. Performance Evaluation

Model performance was evaluated using standard classification metrics,
including precision, recall, Fl-score, and overall accuracy (Sokolova &
Lapalme, 2009). These metrics are widely adopted in classification tasks,
including plasma region identification in space physics (Nguyen et al., 2022;
Wang et al., 2025). Specifically, precision quantifies the proportion of
correctly predicted samples among all predicted instances of a given region;
recall measures the proportion of correctly identified samples among all
actual instances of that region; and the F1-score, defined as the harmonic
mean of precision and recall, provides a balanced assessment of classification
accuracy.

To evaluate the robustness of the HFDTM, we benchmarked its performance
against two alternative approaches: (a) a Wavelet-based Decision Tree Model
(WDTM) (Wang et al., 2025), and (b) a baseline classifier using raw signal
input without preprocessing. Comparative results are summarized in Table 2.

From Table 2, the HFDTM achieved the highest performance, with 93.7%
accuracy and a macro F1-score of 93.3%, outperforming both alternatives. Its
advantage is particularly pronounced in dynamic zones, such as the CS and
CPS, where mesoscale fluctuations are critical. The raw-signal approach
performed worst overall (87.6% accuracy), especially in the CPS
(F1 ~ 80.8%), underscoring the importance of preprocessing. The HFDTM
thus emerges as a reliable method for region classification in the plasma sheet,
combining high statistical accuracy with physical interpretability. Its archi-
tecture preserves the mesoscale structure while filtering noise, making it
especially effective in turbulent or transitional regimes.

4. Magnetic and Velocity Fluctuations in the Plasma Sheet:
p-Dependence

To examine the evolution of magnetic and plasma fluctuations with respect to
plasma f in Earth's magnetotail, we analyzed a data set comprising 127,959
one-minute-averaged intervals from MMSI1. These intervals were collected
during tailward crossings (X <—10 Rg) from May to September 2017.

4.1. Magnetic Field Variability Across f

Figure 4 illustrates the f-dependent morphology of the background magnetic
field components (Byg, By By)- Bxo (Panel a) exhibits a symmetric, fork-
like structure centered around zero, with magnetic intensity decreasing as
plasma g increases. This configuration is characteristic of a Harris-type CS
and reflects the stretched magnetic topology of the mid-tail region. By, (Panel
c) forms a bullet-shaped, symmetric distribution centered near zero, con-
strained within £20 nT, suggesting a stable dawn—dusk component likely
associated with global current systems and/or IMF-By, penetration. B, (Panel
e) displays a horizontally extended profile ranging from O to 15 nT, with a
distinct two-hump structure: a positive hump at intermediate f (0.5-5) and a
broader negative hump at higher £ (1-10), likely reflecting the presence of
embedded flux tubes and transient features such as dipolarization fronts and
tailward reconnection exhausts.
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The magnetic fluctuation components (ABy, ABy, AB,, AB,, AB)) also exhibit pronounced $-dependence. ABy
(Panel b) peaks around £20 nT in the CPS (§ = 1-10), with a zero-centered distribution suggesting frequent small
perturbations interspersed with intermittent strong events. In ultra-low-f environments (# < 0.1), typical of the
lobe and outer PSBL, ABy remains subdued (<5 nT), while modest enhancement in low-f regimes (0.1 < f < 1)
indicates increasing variability. ABy and AB, (Panels d and f) (Panels d and f) show symmetric distributions with
peak amplitudes around 15-20 nT, also intensifying in the CPS. AB, (Panel g) dominates in the medium-/ range
(f = 1-20), with amplitudes largely within 0-5 nT, consistent with Alfvénic or coherent structural turbulence
where energy transfer is predominantly across field lines. In contrast, AB, (Panel h) is generally weaker (<15 nT)
but exhibits a systematic polarity reversal: positive in low-$ regions (PSBL, lobe) and negative in higher j en-
vironments (CPS, CS), indicating a transition from field-aligned expansion to compressive dynamics.

4.2. Plasma Flow and Thermodynamic Response

Figure 5 presents f-dependent trends in plasma flow velocities, ion density, and temperature, both background
and fluctuates. V| (Panel 5a) ranges from 0 to 600 km/s, peaking mostly below 100 km/s across # =~ 0.01-100,
consistent with stagnant to moderate flows. Secondary structures between 200 and 400 km/s (§ = 10-100) and
near 600 km/s (f ~ 1-10) are likely reconnection jets or dipolarization flows. Distinct structures at 200-400 km/s
(f ~ 10-100) and ~600 km/s (f ~ 1-10) likely correspond to reconnection jets or dipolarization flow. AV, (Panel
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b) shows a broad hump below 400 km/s, indicative of mesoscale fluctuations embedded within the background
convection. V|, (Panel 5c) displays a symmetric range from —600 to +600 km/s, peaking near zero, reflecting
balanced field-aligned flows. AV (Panel 5d) is also symmetric, but its amplitude increases at moderate f3 (1-10),
pointing to eddy-like disturbances within bursty flows and/or dipolarization flow (e.g., Zhang, Baumjohann,
et al., 2015; Zhang, Dai, et al., 2015; Zhang, Wang, et al., 2015; Ukhorskiy et al., 2022).

Ton density (n,o) and its fluctuation (An;) vary strongly with £. n,, (Panel 5e) ranges from 0.1 to 100 cm™>, peaking
around 1-10 cm ™3, consistent with CPS norms. An; (Panel 5f) spans a wide range (107-10%* cm™®) with a bipolar
profile, suggesting simultaneous compressional and rarefactional dynamics, likely due to turbulence. T, (Panel
5g) varies between 0 and 12 keV and peaks at 1-5 keV, indicative of a mostly thermalized plasma. AT; (Panel h)
presents a skewed bipolar structure, with sharp cooling (—6 keV) near § ~ 1 and broader heating (~+6 keV) near
P =5, attributed to adiabatic expansion and localized reconnection heating in the CPS, respectively.

4.3. Identification of a Transitional Regime

Collectively, the results identify the f ~ 1-10 interval as a transitional regime where the magnetotail departs from
global equilibrium and becomes increasingly dynamic. This regime is marked by amplified magnetic and plasma
fluctuations, concurrent heating and cooling events, and multiscale coupling from global Harris-type sheets (>10
Rp) to mesoscale (~1,000 km) and kinetic-scale (<ion inertial length) structures. Although global ordering
persists, turbulence becomes increasingly anisotropic and fragmented, highlighting § as a pivotal control
parameter in magnetotail dynamics.

5. Statistical Results
5.1. Anisotropy Across Flow Regimes

Figure 6 presents statistical distributions of velocity and magnetic field anisotropy, along with tilt angle metrics,
across three flow regimes: stagnant (V < 50 km/s), sub-Alfvénic (50 < V < V,), and super-Alfvénic (V > V,). In
the stagnant regime (Panel a), both AV|/AV, and AB/AB, cluster near unity, with median values around 0.44
and 0.76, respectively, reflecting a quiescent and near-isotropic plasma environment.

As flow transitions into the sub-Alfvénic regime (Panel 6b), velocity anisotropy remains stable, while magnetic
anisotropy shows a slight decrease, indicating early structural reorientation. This suggests that even moderate
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Figure 7. Evolution of wavelet energy densities across magnetic field (Eg), ion temperature (E), and ion velocity (E,;) components under different flow regimes. From
top to bottom, panels (a—c) show magnetic field energy, (d—f) show ion temperature energy, and (g—i) show ion velocity energy. Each column corresponds to a distinct
flow category: stagnant (V < 50 km/s), sub-Alfvénic (50 < V < V,), and super-Alfvénic (V > V,). Curves represent distributions from the current sheet (CS, blue),
central plasma sheet (CPS, orange), and plasma sheet boundary layer (PSBL, green).

flows begin perturbing the magnetic field more than the velocity field, likely signaling the accumulation of in-
ternal stresses or weak reconnection activity.

In the super-Alfvénic regime (Panel 6¢), anisotropy values decline markedly. Magnetic anisotropy falls to a
median of ~0.44, while velocity anisotropy drops to ~0.63, reflecting a growing dominance of perpendicular
fluctuations. This trend aligns with the onset of fully developed turbulence and magnetic disorder, especially
within BBFs. The more significant disruption of magnetic fields implies their higher sensitivity to turbulent
deformation.

The angular tilt distributions (Panels 6d—6f) further support this interpretation. 8y, and Oyra remain tightly
centered around 0° under stagnant and sub-Alfvénic flows, indicating radial-aligned structures. However, in the
super-Alfvénic regime, 6y broadens to £60°, and 8,15 becomes bimodal (+30°), evidencing multidirectional
plasma motion and magnetic kinking. Conversely, 6,1, remains sharply peaked at around 0° in all regimes,
suggesting that the vertical dipolar structure remains intact and largely unaffected by horizontal turbulence.

In summary, magnetic anisotropy evolves from near-isotropic (AB)/AB, =~ 1.1) to strongly perpendicular-
dominated (~0.4) with increasing flow speed. Velocity anisotropy shows a more gradual decline (~0.8—~0.5).
These trends highlight the magnetic field's greater vulnerability to turbulent deformation and the transition to
multidirectional dynamics in super-Alfvénic flow regimes.

5.2. Wavelet Energy Distributions

Figure 7 illustrates the evolution of wavelet energy in magnetic (Eg), thermal (E), and kinetic (Ey;) components
across regions and flow regimes. Ej consistently ranks highest in the PSBL, intermediate in the CPS, and lowest
in the CS. In the stagnant regime (Panels 7a), Ej spans from approximately 10° to 10° nT?, with region-specific
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peaks around 10*' nT? in the CS, 10*® nT? in the CPS, and 10> nT? at the PSBL. When transitioning into the
sub-Alfvénic regime (Panel 7b), these distributions remain broadly similar, indicating that sub-Alfvénic flow
introduces only minor adjustments to magnetic energy structure. However, under super-Alfvénic conditions
(Panel 7c), all components exhibit pronounced amplification. E reaches ~10*° nT? in the CS, ~10*® nT? in the
CPS, and ~10>° n'T? in the PSBL. Notably, the PSBL develops an extended high-energy tail exceeding 10°! nT?,
signifying turbulence injection and cascading.

E, distributions mirror this dynamic. In the stagnant regime (Panel 7g), Ey, remains below 10° (km/s)? and shows
a narrow Gaussian-like profile centered around 10°8 (km/s)z, with minimal variance among the CS, CPS, and
PSBL. Entering the sub-Alfvénic regime (Figure 7h), the Ey, distributions shift upward significantly, ranging from
~10° to 10% (km/s)?, although inter-region variance remains modest. Under super-Alfvénic conditions (Panel 7i),
E, becomes highly asymmetric. The CS spans from ~10° to 10® (km/s)?, while both the CPS and PSBL extend
from ~107 to 10® (km/s)%. These latter regions dominate the enhancement, peaking at ~107-3 (km/s)?, consistent
with reconnection-driven outflows and shear turbulence.

E; reveals complex thermodynamic behavior. In stagnant flow (Panel 7d), E; ranges from 107 to 10" eV?,

Interestingly, E; exhibits an inverse spatial profile compared to Ej. It peaks in the CS (~10%° eV?), is slightly
lower in the CPS (~10°! eV?), and is the lowest in the PSBL (~107 eV?). As the flow intensifies, heating
becomes more distributed. With the onset of sub-Alfvénic flow (Panel 7e), all components shift upward: the
PSBL to ~10%! eV?, the CPS to ~10°° eV?, and the CS to ~10'*7 eV?. Under super-Alfvénic conditions (Panel
7f), multimodal structures appear. In the CS, three distinct peaks appear at ~107, ~10”-, and ~10'® eV2. The CPS
also displays tri-modal behavior, with peaks at ~10%', ~107, and ~10”* ¢V>. In contrast, the PSBL shows a sharp
unimodal peak at ~10%? eV? without substructure.

5.3. Wavelet Enstrophy Distributions

Figure 8 presents the wavelet enstrophy (H) distributions for magnetic (Hg), thermal (Hy), and kinetic (Hy/)
domains. Hg peaks in the PSBL across all regimes, expanding into the CPS and CS under faster flows. In the
stagnant flow regime, Hy exhibits a sharp peak at H; ~ 3.401, narrowly concentrated on the PSBL. Under sub-
Alfvénic conditions, the CPS develops a broader secondary peak around Hy =~ 3.41, while CS shows a distinct
peak at ~3.38, evidence of localized turbulence and magnetic structuring expanding inward from the boundary. In
the super-Alfvénic regime, Hg distribution becomes markedly broadened, extending from Hz = 3.400 to 3.304,
consistent with increased magnetic complexity and cascading.

H,, (Panels 7g—7i) captures the intermittent and vortical nature of flow dynamics. In contrast to Hy, Hy, is lowest in
the PSBL and higher in the CS and CPS. A regime-dependent transition is observed in both stagnant and sub-
Alfvénic regimes. The CS is the primary source of H,. However, under super-Alfvénic conditions, dominance
shifts to the CPS, indicating intensified flow shear and nonlinear mixing processes in the central plasma region.

Hp evolves in a similar pattern to H,. It transitions from CS-dominance under stagnant conditions to CPS-
dominance in super-Alfvénic flow, mirroring the trends seen in kinetic energy. This tight coupling between
thermal and velocity enstrophy implies that chaotic, intermittent heating is more tightly regulated by flow
structures than magnetic ones, reinforcing the view that turbulence and energy conversion in the super-Alfvénic
flow are primarily governed by velocity shear-driven rather than purely wave-associated processes.

6. Discussion

The multimodal thermal energy distributions in the CS and CPS during super-Alfvénic flow (Figure 7f) suggest
the operation of dual energy transfer pathways, kinetic and magnetic, acting simultaneously. This interpretation is
further supported by the wavelet enstrophy analysis (Figure 8), where H; and Hy, evolve in parallel and shift
spatially from the CS to the CPS as the flow speed increases. In contrast, Hg consistently peaks in the PSBL across
all flow regimes. These observations support the hypothesis that intermittent heating is predominantly governed
by flow structures, particularly those generated by reconnection, turbulence, and velocity shear dynamics.

Figure 9 provides a compelling statistical breakdown of correlation strengths between velocity and magnetic field
components across various plasma regimes and spatial regions within the magnetotail, offering critical insights
into the underlying turbulence mechanisms. A dominant observation is that weak-to-moderate correlations
overwhelmingly characterize the system, with correlation coefficients (ICCI) below 0.7 accounting for over 85%—
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93% of the events across all examined cases. This predominance of lower correlation strengths is consistent
throughout the CS, CPS, and PSBL, and across all flow regimes from sub-Alfvénic to super-Alfvénic. Such
widespread incoherence supports the interpretation that magnetotail turbulence is not governed by classical MHD
wave processes but is instead highly intermittent and fragmented, driven by short-lived structures such as
dipolarization fronts, flow decelerating/braking, and localized reconnection events (Fu et al., 2012a, 2012b;
Zhang, Lui, et al., 2020). These findings affirm the departure from coherent Alfvénic wave activity and align well
with the multiscale bursty nature of plasma dynamics documented in observational works such as those of
Volwerk et al. (2004), Wang et al. (2016), and Safrankova et al. (2021).

A component-wise assessment reveals a balanced occurrence of transverse (Alfvénic) and compressive (non-
Alfvénic) couplings. Specifically, V,-B, and V,—B) pairs capture shear Alfvénic and possible kinetic Alfvén
wave interactions, while V|—B, interactions are representative of slow-mode compression and mirror mode
activity. However, of particular note are the V|—B, pairings, which consistently stand out in the strong correlation
bins (ICCl > 0.7) across all flow regimes and spatial locations. In the super-Alfvénic regime, V|—B) reaches the
highest strong correlation levels, peaking at over 10% in the CS, significantly higher than other component pairs.
This statistically significant enhancement in V|~B, coupling under high-speed flow conditions suggests a shift in
the dominant transport mechanism away from traditional Alfvénic turbulence toward field-aligned energy
transport processes. The increased coherence of these interactions likely reflects the influence of structured field-
aligned flows, such as those induced by anisotropic pressure gradients, mirror mode instabilities, or kinetic slow
shocks, which are often outside the scope of standard MHD turbulence theory.

These statistical findings on the V—B correlation strength are further corroborated by the wavelet energy and
enstrophy analyses. Under super-Alfvénic conditions, the wavelet energy distributions for magnetic, kinetic, and
thermal components exhibit broad, asymmetric, and often multi-peaked structures, especially within the CPS and
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PSBL. These distributions are characteristic of intermittent turbulence, where energy is transferred through
localized bursts rather than continuous homogeneous fluctuations. Similarly, the enstrophy distributions reveal
broadened magnetic enstrophy (Hg) and a flow-regime-dependent shift in the dominance of kinetic (Hy;) and
thermal (H) enstrophy from the CS to the CPS. This pattern reflects intensified flow shear, enhanced mixing, and
small-scale structuring, particularly in the central and boundary layer regions. These wavelet-based signatures of
complexity and localization are consistent with the predominance of weak-to-moderate V-B correlations.
Together, these results confirm that energy transfer in the magnetotail is largely governed by fragmented, short-
lived processes rather than coherent Alfvénic coupling. They reinforce the interpretation that enhanced inter-
mittency, driven by magnetic reconnection, substorm dipolarization, and flow braking, is a fundamental feature of
the plasma sheet's turbulent environment.

Overall, these findings imply that the magnetotail does not conform to a single turbulence paradigm. Instead, it
constitutes a hybrid environment where multiple interaction mechanisms coexist and evolve dynamically with
changing flow conditions. The reversal of magnetic field anisotropy, the emergence of multimodal heating
signatures, and the enhanced V|~B) correlations, particularly during BBF turbulence, point to a departure from
classical Alfvénic turbulence, which is predominantly transverse and anisotropic. These results highlight the
importance of incorporating non-Alfvénic, field-aligned structures and non-equilibrium processes into models of
plasma sheet turbulence.

7. Conclusions

In this study, we present a comprehensive, regionally resolved investigation of magnetic and velocity fluctuations
in Earth's magnetotail plasma sheet, enabled by the application of a machine learning-based magnetotail classifier
(HFDTM). This classifier facilitates a flow-regime—aware diagnostic framework, allowing us to examine fluc-
tuations across the CS, CPS, and PSBL under varying plasma flow conditions. The results reveal a fundamentally
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multiscale and anisotropic system, whose behavior is strongly governed by both plasma flow speed and spatial
localization. The key findings of the study are summarized as follows:

1. Anisotropy Transition: Magnetic field anisotropy reverses with increasing flow speed from near-isotropic
values (AB|/AB, ~ 1.1) under stagnant conditions to strongly perpendicular-dominated distributions
(~0.4) in the super-Alfvénic regimes. Velocity anisotropy shows a more gradual shift (~0.8—~0.5), indicating
stronger sensitivity of magnetic structures to flow deformation.

2. Multimodal Heating: Wavelet energy and enstrophy analyses reveal multi-peak structures in the thermal
energy spectrum, particularly under super-Alfvénic flow conditions. Diverging trends between E and E), the
nonequivalence of magnetic and kinetic energy transfer under strong driving. A pronounced spatial
discrepancy between Hy and Hy, alongside the close correspondence H,—H,, evolution, confirms the role of
eddy-driven heating and supports the presence of dual energy transfer pathways, magnetic and kinetic, that
together give rise to the observed multimodal heating behavior.

3. Correlation structure: Across all regions and flow regimes, weak-to-moderate velocity—magnetic field (V-B)
correlations dominate, suggesting enhanced intermittency in plasma sheet turbulence. However, under super-
Alfvénic conditions, V|—B, interactions emerge as the dominant source of strong correlation, signaling a
transition toward more coherent field-aligned energy transport mechanisms.

Data Availability Statement

The MMS data sets analyzed during the current study are available in the [CDAWEB] repository, https://cdaweb.
gsfc.nasa.gov/pub/data/mms/ The WIND data sets are available through the link: https://cdaweb.gsfc.nasa.gov/
pub/data/WIND/ (accessed on 10 November 2024).
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